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Goals of Robust Constrained Control
Uncertain constrained linear system

xt=Ax+Bu+w (x,u)eX,U wew

Design control law u = k(x) such that the system:

1. Satifies constraints : {x;} C X, {u;} C U for all disturbance realizations
2. Is stable: Converges to a neighbourhood of the origin

3. Optimizes (expected/worst-case) “performance”
4

. Maximizes the set {xo | Conditions 1-3 are met }

Challenge: Cannot predict where the state of the system will evolve

We can only compute a set of trajectories that the system may follow

Idea: Design a control law that will satisfy constraints and stabilize the system
for all possible disturbances
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Uncertain State Evolution

Given the current state xg, the model xt = Ax + Bu + w and the set W,
where can the state be / steps in the future?

Many possible
trajectories ¢;(xg, u, w)

X0 Trajectory for w = 0

Define ¢i(xo, u, w) as the state that the system will be in at time i if the state
at time zero is xp, we apply the input u:= {up, ..., uy—1} and we observe the
disturbance w := {wp, ..., wy_1}.
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Robust Constraint Satisfaction

Ensure that all possible states
¢i(x0, u, w) satisfy system con-
straints X.

Ensure that all possible states
¢n(x0, u, w) are contained in the
terminal set.

The idea: Compute a set of tighter constraints such that if the nominal
system meets these constraints, then the uncertain system will too.
We then do MPC on the nominal system.
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Robust Constraint Satisfaction

Goal: Ensure that constraints are satisfied for the MPC sequence.

Tightened constraints for ¢,

Require: x; e Xo [/ AY ... A7 W and
Nominal x; satisfies tighter constraints — Uncertain state does too
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Putting it Together
Robust Open-Loop MPC

N—1
muin Z (i, ui) + Ve(xn)
i—0
s.t. xiy1 = Ax; + Bu;
xi € X6 A,‘Wi
u el
XN € )Ef
where 4; := [A° Al ... A’]and Xr is a robust invariant set for the system

xT = (A+ BK)x for some stabilizing K.

We do nominal MPC, but with tighter constraints on the states and inputs.

We can be sure that if the nominal system satisfies the tighter constraints,
then the uncertain system will satisfy the real constraints.

= Downside is that AW’ can be very large
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Outline

1. Closed-Loop Predictions
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MPC as a Game

Two players: Controller vs Disturbance
xT =f(x,u)+w

1. Controller chooses his move u
2. Disturbance decides on his move w after seeing the controller’s move
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MPC as a Game

Two players: Controller vs Disturbance
xT =f(x,u)+w

1. Controller chooses his move u

2. Disturbance decides on his move w after seeing the controller’s move

What are we assuming when making robust predictions?

1. Controller chooses a sequence of N moves in the future {ug, ..., Un_1}

2. Disturbance chooses N moves knowing all N moves of the controller

We are assuming that the controller will do the same thing in the future no
matter what the disturbance does!

Can we do better?
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Closed-Loop Predictions

What should the future prediction look like?

1.

Controller decides his first move ug

. Disturbance chooses his first move wy

Controller decides his second move u1(x;) as a function of the first
disturbance wy (recall x; = Axp + Bup + wp)

Disturbance chooses his second move w; as a function of u;

. Controller decides his second move t>(x>) as a function of the first two

disturbances wy, wq
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Closed-Loop Predictions

We want to optimize over a sequence of functions {ug, u1(-), ..., un—1(-)},
where pi(x;) : R” — R™ is called a control policy, and maps the state at time
/ to an input at time /.

Notes:

e This is the same as making u a function of the disturbances to time i/, since
the state is a function of the disturbances up to that point

e The first input ug is a function of the current state, which is known.
Therefore it is not a function, but a single value.

The problem: We can’t optimize over arbitrary functions!

Robust MPC 2 8-11 Model Predictive Control ME-425



Closed-Loop MPC

A solution: Assume some structure on the functions

Pre-stabilization u;(x) = Kx +v;
e Fixed K, such that A+ BK is stable
e Simple, often conservative

Linear feedback p(x) = Kix+ v
o Optimize over K; and v;
e Non-convex. Extremely difficult to solve...

Disturbance feedback u;(x) = Z};é Miw; + v;
o Optimize over Mj and v;
o Equivalent to linear feedback, but convex!
o Can be very effective, but computationally intense.

Tube-MPC pui(x) = v; + K(x — X;)
e Fixed K, such that A+ BK is stable
o Optimize over X; and v;
e Simple, and can be effective

We will cover tube-MPC in this lecture.
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Outline

2. Tube-MPC
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Tube-MPC

xt=Ax+Bu+w (x,u)eXxU wew

The idea: Seperate the available control authority into two parts

1. A portion that steers the noise-free system to the origin z= = Az + Bv

2. A portion that compensates for deviations from this system
et =(A+BK)e+w

We fix the linear feedback controller K offline, and optimize over the nominal
trajectory {vg, ..., vy_1}, which results in a convex problem.

OFurther reading: D.Q. Mayne, M.M. Seron and S.V. Rakovic, Robust model predictive control of
constrained linear systems with bounded disturbances, Automatica, Volume 41, Issue 2, February 2005
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System Decomposition
Define a ‘nominal’, noise-free system:
Ziy1 = Az + By,
Define a ‘tracking’ controller, to keep the real trajectory close to the nominal
u=Kkx—-2z)+v

for some linear controller K, which stabilizes the nominal system.

Define the error e; = x; — z;, which gives the error dynamics:

€it1 = Xi+1 — Zi+1
= Ax; + Bu; + w; — Az; — By,
= Ax; + BK(x; — z;) + Bvi + w; — Az; — Bv;
=(A+BK)(xi —z))+w;
=(A+ BK)e +w,
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Error Dynamics
Bound maximum error, or how far the ‘real’ trajectory is from the nominal
eir1 = (A+ BK)ei + w; w, € W

Dynamics A+ BK are stable, and the set W is bounded, so there is some set
& that e will stay inside for all time.

We want the smallest such set (the ‘minimal invariant set’)

We will cover how to compute this set later
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Tube-MPC : The Idea

20

We want to ignore the noise and plan the nominal trajectory
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Tube-MPC : The Idea

X0

=~
Xi

(May be
anywhere
in the set)

We know that the real trajectory stays ‘nearby’ the nominal one: x; € zz @ £
because we plan to apply the controller u; = K(x; — z;) + v; in the future
(we won't actually do this, but it's a valid sub-optimal plan)
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Tube-MPC : The Idea

State constraints

g@Z,‘

PXi

{(May be
ranywhere
iin the set)

We must ensure that all possible state trajectories satisfy the constraints
This is now equivalent to ensuring that z, £ C X
(Satisfying input constraints is now more complex - more later)
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Tube-MPC

What do we need to make this work?

Compute the set £ that the error will remain inside

Modify constraints on nominal trajectory {z} so that z; & £ C X and
vie U KE

Formulate as convex optimization problem

..and then prove that

Constraints are robustly satisfied

The closed-loop system is robustly stable
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Tube-MPC

What do we need to make this work?

Compute the set £ that the error will remain inside

Modify constraints on nominal trajectory {z} so that z; & £ C X and
vie U KE

Formulate as convex optimization problem

..and then prove that

Constraints are robustly satisfied

The closed-loop system is robustly stable

Robust MPC 2 8-21 Model Predictive Control ME-425



Recall: Robust Invariant Set

Robust constraint satisfaction, for an autonomous system x* = f(x, w), or
closed-loop system x™ = f(x, k(x), w) for a given controller k.

Robust Positive Invariant set
A set OW is said to be a robust positive invariant set for the autonomous

system xj11 = f(x;, w) if

xeOV = f(x,w)eOV  foralwew

Previously we wanted the maximum robust invariant set, or the largest set in
which our terminal control law works.

We now want the minimum robust invariant set, or the smallest set that the
state will remain inside despite the noise.
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Uncertain State Evolution

Consider the system x™ = Ax + w and assume that xg = 0.

Where can the state evolve to? (i.e., how close can we stay to the origin?)

X1 = Wo

XQZAX1+W1:AW0+W1

-1
Xi = E Aka
k=0

Assume that w; € W for all i. What is the set F; that contains all possible
states x;?

i—1
Fi=@PAW, F:={0}
k=0

where PO Q:={x+y|xeP, yecQ}
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Minimum Robust Invariant Set

As sum goes to infinity, we arrive at the minimum robust invariant set mRPI

Foo =AW, Fo:={0}
k=0

If there exists an n such that £, = F,.1, then F, = F

Minimal Invariant Set

Input: A
Output:
Qo — {O}
loop
Qi1 < QAW
if Q,‘+1 = Q, then
return F = Q;
end if
end loop

Robust MPC 2 8-24

o A finite n does not always exist, but

a ‘large’ nis a good approximation

o If nis not finite, there are other

methods of computing small
invariant sets, which will be slightly
larger than Fu
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Computing Minkowski Sums for Polyhedral Data
Given P:={x | Tx <t} and Q := {x | Rx < r}, the Minkowski sum is:

PeQ={x+ylxeP yeQ}
={z|Ix,yz=x+y, Tx<t, Ry<r}
={z |3y Tz—Ty <t Ry<r}

Pl AC) =0

This is a projection of a polyhedron from (z, y) onto z.
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Minkowski Sums in MPT

Recall: We covered computation of projection in Lecture 4.

P = polytope(T,t);

Q = polytope (R, r);

7 = zeros(size(R,1),size(T,2));

P_plus_Q = projection(polytope ([T —T; Z R], [t;r]), l:size(T,2));
plot ([P Q P_plus_Q]);
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Example

System dynamics

= Rl Wtz s

where K is the LQR controller for @ =/, R = 10.

Sets A'W converging to minimal The state trajectory will stay in the set
robust invariant set Fo, in the limit Fo for all time
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Tube-MPC

What do we need to make this work?
e Compute the set £ that the error will remain inside

« Modify constraints on nominal trajectory {z;} so that z; ® £ C X and
vie U KE

e Formulate as convex optimization problem

..and then prove that
e Constraints are robustly satisfied

e The closed-loop system is robustly stable
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Noisy System Trajectory

Given the nominal trajectory z;, what can the noisy system trajectory do?
Xi =2z + €

Don't know what error will be at time i, but it will be in the set £

Therefore, x; can only be up to & far from z;

X €z@E={z+elecf&}
State constraints

5@2,’

o

{(May be
ranywhere
{in the set)
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Pontryagin Difference
Pontryagin Difference

Let A and B be subsets of R”. The Pontryagin Difference is

AeB:={x|x+ecAVeec B}

A B A@B,(F’ire )

Lemma

xXEAOB=x+ecAVeeB

We covered how to compute the Pontryagin Difference last week
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Constraint Tightening
Goal: (xi, uj) € X x U for all {wp, ..., Wi_1} € W

We want to work with the nominal system z™ = Az 4+ Bv but ensure that the
noisy system x* = Ax + Bu + w satisfies the constraints.

Sufficient condition:
zidECX = zeXOE

The set £ is known offline - we can compute the constraints X & £ offline!

A similar condition holds for the inputs:

uyeKEDY, CU = vie U KE
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Tube-MPC

What do we need to make this work?

Compute the set £ that the error will remain inside

Modify constraints on nominal trajectory {z} so that z; & £ C X and
vie U KE

Formulate as convex optimization problem

..and then prove that

Constraints are robustly satisfied

The closed-loop system is robustly stable
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Tube-MPC Problem Formulation

Tube-MPC
Zjip1 = Azi+ By, i€ [O, N — ]_]
z7eXo€& ielo, N—1]
Feasible set:  Z(xp) :=< z,v vieUeKE iel0, N-1]
zZy € XF
X0 €Ez20DE
N—1
Cost function: V(z,v) := Z I(zi, vi) + Vi(zn)
i=0
Optimization problem:  (v*(xp),z"(X0)) = argmin, , {V(z,v) | (z,v) € Z(x0) }
Control law:  pype(X) := K(x — Z5(x)) + v (x)

Main points:

e Optimizing the nominal system, with tightened state an input constraints
o First tube center is optimization variable — has to be within £ of xg

e The cost is with respect to the tube centers

e The terminal set is with respect to the tightened constraints
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Tube-MPC

What do we need to make this work?

Compute the set £ that the error will remain inside

Modify constraints on nominal trajectory {z} so that z; & £ C X and
vie U KE

Formulate as convex optimization problem

..and then prove that

Constraints are robustly satisfied

The closed-loop system is robustly stable
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Tube-MPC Assumptions

Much the same as for nominal MPC:

1. The stage cost is a positive definite function, i.e. it is strictly positive and
only zero at the origin

2. The terminal set is invariant for the nominal system under the local
control law k¢ (2):

7zt = Az + Bke(z) € X forall z € X
All tightened state and input constraints are satisfied in Xs:
Xr CXe& ke(z)eUs & forall z € X
3. Terminal cost is a continuous Lyapunov function in the terminal set X:

Vi(Az + Bkf(2)) — Vi(2) < —I(z, k(2)) for all z € Xf
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Robust Invariance
Thm: Robust Invariance of Tube-MPC

The set Z := {x | Z(x) # 0} is a robust invariant set of the system x™ =
AX + Blirupe(X) + w subject to the constraints (x, u) € X x U.

Let ({v..... Vi b {z8 zj}) be the optimal solution for time xq.

At the next point in time, the state is:
x1=Axo+ BK(xo — z5) + By + w for some w € W

i.e., the state x; may have many possible values. We need to show that there
exists a feasible solution for all of them.

By construction, the state x; is in the set z; & &£ for all W. Therefore (as in
standard MPC), the sequence

(v v ke(@) ) Az 2y Azy + Bre(2y)})

is feasible for all x;.
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Tube-MPC

What do we need to make this work?

Compute the set £ that the error will remain inside

Modify constraints on nominal trajectory {z} so that z; & £ C X and
vie U KE

Formulate as convex optimization problem

..and then prove that

Constraints are robustly satisfied

The closed-loop system is robustly stable
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Robust Stability
Thm: Robust Stability of Tube-MPC

The state x of the system x™ = Ax + Bpube(X) + w converges in the limit to
the set £.

As in standard MPC, we have the relationship:

N—1
J(x0) = p_ Iz vi) + Vi(zy)

i=0

N
J0a) £ Y UE ) + Vil(zie)

i=1

= J(x0) = 25, v5) + Vi(zy-1) — Vi(zw) + 2y, K (2y))
—

>0 <0 (Vs is a Lyapunov function in Xf)

This shows that lim;_« J(z;(x;)) = 0, and therefore lim;_, z{(xi) = 0.

However, x; does not tend to zero! It only stays within a robust invariant set
centered at z{(x;): limjoeo dist(x;, £) = 0, where dist is any distance function.
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Putting it all together: Tube MPC

To implement tube MPC:
— Offline —
. Choose a stabilizing controller K so that ||[A+ BK] < 1

. Compute the minimal robust invariant set £ = F,, for the system
xT =(A+BK)x+w, we W!

. Compute the tightened constraints X :=Xo &, U:=Ue &

. Choose terminal weight function V¢ and constraint Xr satisfying
assumptions on slide 35

N =

A~ W

— Online —

1. Measure / estimate state x

2. Solve the problem (v*(x), z*(x)) = argmin, , {V(z,v) |(z,v) € Z(x)}
(Slide 33)

3. Set the input to u = K(x — z5(x)) + v§(x)

INote that it is often not possible to compute the minimal robust invariant set, as it may
have an infinite number of facets. Therefore, we often take an invariant outer approximation.
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Example

System dynamics

0 1

X+_{1 1}X+[015}u+w W= {w | [wa| <0.01, |ws| <0.1}

Constraints:
Xi={x|lxlloc <1}

Stage cost is:

I(z,v):= zTQz + v; Ry,

where

o !

U:=Aullulf <1}
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Offline Design - Compute Minimal Invariant Set

1. Choose a stabilizing controller K so that [|[A+ BK|| < 1

2. Compute the minimal robust invariant set £ = F,, for the system
xt=(A+BK)x+w, weW

We take the LQR controller for Q =/, R = 1:

K :=[-0.5198 —0.9400]

Evolution of the system
xT = (A+ BK)x + w for
x=[-01 02]"

044 -0.2 0 0.2 0.4
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Offline Design - Tighten State Constraints

3. Compute the tightened constraints X :=X o & U:=Ue KE

=Bl

If € ={x | Fx < f}, then the tightened constraint sets are:

e ] e= ] veee)

Olelec€}
elec€}
elec&}
elec&}

X—{x|||x||oos1}—{x

X@(‘,’:{XX+GGXVGEE}:{X

1—max{[1

_ ), /}X< 1-max{[0 1
{— ~ (14 max{[1 0
1+max{[0 1

[t TR i

The maximizations are all linear programs and can be computed offline.

The results is a polytope with smaller RHS.
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Offline Design - Tighten State Constraints

2 71

-5 0 5

Blue : Original constraint set X
Red : Error set &£
Green : Tightened constraints X & £
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Offline Design - Tighten Input Constraints

We compute U & K& in the same manner:

U@KE_{U

:{u

[ﬂu< m}e{Kx|Fx<f}

[Mus [l madiei =iy
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Offline Design - Terminal Weights and Constraints

We need to find a function V¢ and a set X that satisfy the conditions on
slide 35:

1. The terminal set is invariant for the nominal system under the local
control law k¢(z):

7zt = Az + Bke(z) € X forall z € X
All tightened state and input constraints are satisfied in Xr:
Xsr CXS& ke(z) eUE forall z € Xy
2. Terminal cost is a continuous Lyapunov function in the terminal set X:

Vi(Az + Bke(2)) — Vi(2) < —I(z, k¢(2)) for all z € Xf

Robust MPC 2 8-45 Model Predictive Control ME-425



Offline Design - Terminal Constraint
We base our terminal weights and constraints on the LQR controller
(many other choices possible).

Choose the terminal control law to the the LQR control law: kf(x) = Kx
where the weights Q and R are taken the same as for our MPC problem.

We need a set Xr that is invariant under this controller and contained in the
tightened constraints:

pre(Xf) CAXr and X CX6 € and KX CUsKE

We know how to compute the maximal invariant set for linear systems with
polytopic constraints (Lecture: Introduction to Constrained Systems)
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Offline Design - Terminal Cost
We need to find a function V¢ with the property:
Vi(Az + Bkr(2)) — Vi(2) < —I(z, kf(2)) for all z € Xf

where we've chosen kr(z) = Kz (the optimal LQR controller)

Recall the the optimal cost of the LQR control law is:
o0
V*(z) = ZZ,-T(Q + KTRK)z = z] Pz
i=0

where P is the solution to a discrete-time Riccati equation.

We know that V*(z) is a Lyapunov function for the system z* = (A + BK)z:

Vi (z) — V() = Zz, (Q+ KTRK)z ZZ, (Q+ K"RK)z

i=1 i=0
= -2 (Q+ K" RK)zo = —I(20, kr(2))

which is exactly what we need, and therefore, we can take V¢(z) = z” Pz.
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Tubes - Example
2

Initial state
15 (@K Planned tube trajectory
1 U0

0.5

X
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Tubes - Example

2
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Tubes - Example
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Tubes - Example
2

15(]
1,

0.5
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Tubes - Example
2

15(]

1,
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Tubes - Example
2

15(]

1,
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Tube MPC - Summary

Idea:
e Split input into two parts: One to steer system (v), one to compensate for
the noise (Ke)

u=Ke+v

e Optimize for the nominal trajectory, ensuring that any deviations stay
within constraints

Benefits:
e Less conservative than open-loop robust MPC (we're now actively
compensating for noise in the prediction)

e Works for unstable systems
e Optimization problem to solve is simple

Cons:
e Sub-optimal MPC (optimal is extremely difficult)

e Reduced feasible set when compared to nominal MPC
o We need to know what W is (this is usually not realistic)
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Outline

3. Nominal MPC with noise
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Nominal MPC with Noise

We want to control the noisy system:

xT=Ax+Bu+w

What happens if we just ignore the noise and hope for the best?
Setup and solve a standard MPC problem:

N—1
V*(x0) = muin Z 1(xi, ui) + Ve(xw)
i=0
s.t. Xip1 = Ax + By
(X,‘, Ll,') eXxU
Xy € Xr

Our closed-loop system is now:

xT = Ax + Buj(x) + w
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Example

Consider the same example again, with the same noise, but now we just
pretend it's not there in the controller.
2

e 100 trajectories with
1.5} different noise realizations

1t o Seems to work fine?!

0.5¢
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Example

Consider the same example again, with the same noise, but now we just
pretend it's not there in the controller.

2 . . .
e 100 trajectories with
1.5} different noise realizations
~. .
1t \ e Seems to work fine?!
05l e Can no longer be certain it
will work!
or e For some states it will work
-0.5f sometimes
-1t How do we formalize this idea?
-15
_2 L
-5 0 5

Robust MPC 2 8-59 Model Predictive Control ME-425



What Happens to Our Lyapunov Function?
Recall: The optimal cost V*(x) is a Lyapunov function for the nominal system

V*(Ax + Bu*(x)) — V*(x) < =I(x, u*(x))
However, our state at the next point in time is now

xt = Ax+ Bu*(x)+w

Do we still have a Lyapunov decrease?
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What Happens to Our Lyapunov Function?

Assume: Optimal cost V* is continuous?
[V*(Ax + Bu*(x) + w) — V*(Ax + Bu*(x))]
< [[Ax + Bu*(x) + w — (Ax + Bu*(x))|| = vllw|
Our Lyapunov decrease can be bounded as:
V*(Ax + Bu*(x) + w) — V*(x)
= V*(Ax + Bu*(x) + w) — V*(x) — V*(Ax + Bu*(x)) + V*(Ax + Bu")
< V¥ (Ax + Bu*(x)) — V*(x) +|w|
< —1(x, v (x) +vllwl

e Amount of decrease grows with ||x||
e Amount of increase is upper bounded by max{||w| |w € W}

Therefore we will move towards the origin until there is a balance between the
size of x and the size of w

2True for linear systems, convex constraints and continuous stage costs.
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Input-to-State Stability

What we have shown is that our system is Input-to-State Stable.

Much more general theory than what is given here3

Asymptotic stability ISS stability

Bound that Bound that
monotonically monotonically
decreases to zero decreases to max{||w| | w € W}

/

[l

time time

System converges to zero Converges to set around zero, who's
size is determined by size of the noise

3L\mon, D., Alamo, T., Raimondo, D. M., Mufioz de la Pefia, D., Bravo, J. M., Ferramosca, A., and Camacho, E. F. (2009). Input-to-State
Stability: A Unifying Framework for Robust Model Predictive Control. In L. Magni, D. M. Raimondo, & F. Allgéwer (Eds.), Nonlinear Model
Predictive Control (Vol. 384, pp. 1-26). Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-01094-1
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Nominal MPC for Uncertain Systems - Summary

Idea
e Ignore the noise and hope it works

Benefits

e Simple

e No knowledge of the noise set W required - ‘just works’

o Often very effective in practice (this is what most practitioners do anyway)
o Feasible set is large (we can find a solution, but it may be garbage)

e Region of attraction may be larger than other approaches

Cons
« Very difficult to determine region of attraction (set of states in which the
controller works)

e Hard to tune - no obvious way to tradeoff robustness against performance
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Robust MPC for Uncertain Systems - Summary

Idea
e Compensate for noise in prediction to ensure all constraints will be met

Cons

o Complex (some schemes are simple to implement, like tubes, but complex
to understand)

e Must know the largest noise W
o Often very conservative
¢ Feasible set may be small

Benefits
e Feasible set is invariant - we know exactly when the controller will work

e Easier to tune - knobs to tradeoff robustness against performance
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